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Short-term load forecasting by separating daily
profiles and using a single fuzzy model across

the entire domain
Gregor Černe, Dejan Dovžan, and Igor Škrjanc, Member, IEEE

Abstract—The problem of energy load forecasting has
emerged as an essential area of research for electrical
distributors seeking to minimize costs. This problem has
a high degree of complexity; therefore, this paper solves
the problem of short-term load forecasting for a day ahead
using an adaptive fuzzy model, defined across the entire
input space in order to share information between different
areas. The proposed solution first separates the forecasting
of daily load profiles into smaller, simpler subproblems,
which are solved separably using a Takagi-Sugeno fuzzy
model. This is done in order to solve smaller subproblems
better, which brings improved forecasting accuracy after
combining the subproblem results. The identification of the
model is based on a recursive Gustafson-Kessel clustering
and recursive weighted least mean squares, to which a
combined membership function is proposed in order to
improve domain partitioning. The model was tested on the
real data obtained from a large Slovenian energy distri-
bution company, at which the developed model forecast
outperformed other methods, especially in the start of the
week and the winter.

Index Terms—fuzzy adaptive model, combined member-
ship function, profile separation

I. INTRODUCTION

Short-term load forecasting (STLF) is essential in the elec-
tricity market for the participants to manage the market effi-
ciently and stably. In a simplified model of electric retail chain
(power plants → distributers → consumers), the demand (of
the consumers) dictates the amount of produced energy, and
distributers need to meet the demand by purchasing electric
energy from power plants. Distributers want to minimize the
cost of the needed energy, which depends greatly on the
purchased price set by power plants. Power plants are selling
energy at lower prices, if it is bought in advance. Therefore,
electrical distributors attempt to purchase as much energy as
soon as possible, but any error in the forecast brings additional
costs. According to Bunn and Farmer [1], an increase of
forecasting error of 1% caused an increase of 10 million
pounds in operating costs per year for one electric utility in the
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Černe).
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UK in 1984. In order to buy the appropriate amount of electric
energy, they have to correctly predict the electrical load of their
customers and buy energy according to that forecast, meaning
most of the STLF is the responsibility of electrical distributers.

The STLF problem has been tackled with many different
techniques. The most frequently used method in literature is
the autoregressive integrated moving average (ARIMA) [2].
ARIMA models have been used in STLF in many variations:
seasonal ARIMA (SARIMA) [3], ARIMA transfer function
model [4], an expert system that incorporated the ARIMA
method [5] and an ARMA model including non-Gaussian
process consideration [6]. After a paper reviewing the usage
of artificial neural networks (ANN) in STLF was published
in 2001 [7], that points out the problems of the ANN model,
more research was done on this topic to overcome the men-
tioned problems, using bagged ANN [8], cascaded ANN [9],
radial basis functions networks [10], combining a multilayer
perceptron layer with hybrid Levenberg-Marquardt differential
evolutionary learning algorithms and using an adaptive hybrid
genetic optimization back-propagation neural network algo-
rithm [11]. Furthermore, ANN learned by genetic algorithm
was proposed in [12] [13].

Other methods have also been used for the STLF problem,
but to a lesser extent: using general exponential smoothing
[14], weighted Gaussian process regression [15], linear regres-
sion (LR) and robust linear regression (RLR) [16], the similar-
day method [17] (it searches historical data for days with
similar characteristics in comparison to the forecasting day)
and others. The method of similar days was also combined
with ANN and wavelet transform in [18]. Another widespread
method in STLF are support vector machines (SVM) [19],
which was combined with genetic algorithms [20], the similar-
day method [21], and neural networks [22].

The problem of STLF can be viewed as a time-series
prediction problem (e.g. [23]) in which the next-day load is
predicted based on the current-day load. Not considering the
date, temperature and other weather influences, such models
can produce poor predictions. In other papers (e.g. [24]), the
hourly load is treated independently (model for every hour),
which is not necessarily the case if we look at Fig. 1.

Therefore, in this paper, we propose splitting the load
forecasting problem into three subproblems: forecasting the
average daily load, the amplitude of the load, and its shape.
Each subproblem is solved separately and then merged back
together.



0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2795555, IEEE
Transactions on Industrial Electronics

Fig. 1. Daily load profiles different days: summer weekday, summer
weekend, winter weekday, winter weekend

Each subproblem is solved using an adaptive Takagi-Sugeno
(TS) model because of its ability to model non-linearities in
the process (seasons, weekends, etc.). The TS model has been
successfully used in many applications [25]–[27] including
STLF [28]–[30]. The online TS model learning methods
were used to cope with changing relations across the seasons
between the measured input variables and load profile. They
can be divided into groups: Adaptive methods (e.g., ANFIS
[31], recursive fuzzy c-means (rFCM), and used recursive
Gustafson-Kessel (rGK) clustering [32]), where the number
of clusters (or other structure model) is predefined, and only
the parameters of local models and membership functions are
adapted; Incremental methods (e.g. DENFIS [33], eTS [34],
FLEXFIS [35], where only adding new complexity to existing
structure is implemented; Evolving methods (e.g. SAFIS [36],
EFuNN [37], eTS+ [38], eFuMo [39], TSCIT2FNN [40] (also
used in STLF) where, in addition to adding the complexity
to the structure, simplifying the model structure is also im-
plemented. In this paper, the adaptive model was used, as the
energy load structure is similar through the years, and there is
no need for incremental or evolving models.

This paper contributes in three points: for improving STLF,
splitting the daily profile into average, shape, and amplitude is
proposed (1), as is using a single model valid across the whole
input domain (2). To improve fuzzy clustering, a combined
membership function is proposed (3), which joins information
about input and output distance from the cluster prototype.

The organization of the paper is as follows: first, a problem
statement is made with the description of the methods used.
The proposed improvements are presented and demonstrated.
Next, the modeling procedure is described along with regressor
selection and model explanation. Then, the results are pre-
sented and compared to results obtained with conventional
methodology. Finally, concluding remarks are given as well
as some guidelines for future work and research.

II. PROBLEM STATEMENT

The goal in short-term load forecasting (STLF) is to predict
the load profile E(k) of the next day at once for the purpose

of the day-ahead market. Load profile is defined with E(k) =
[E1(k), . . . ,E24(k)]T , where El(k) is energy load on k-th day
in l-th hour. Load can be forecast using measurements for
previous days and weather forecast for the k-th day. In Fig. 1
and 2 examples of load profiles are shown. It can be seen that
weekend profiles are much different than weekday profiles;
the same can be said for winter and summer profiles.

Electrical load prediction is a non-linear time-variant prob-
lem, which has many non-measurable factors that increase
the uncertainty of the prediction model, such as short-term
migrations (holidays, business trips, sport events), long-term
migrations, big public events in the area, the daily routines
of people [41], factory shutdowns, etc. However, some factors
do not change very rapidly and can be compensated to some
extent with the adaptation of the prediction model, such as
long-term migrations.

The STLF problem presented in this paper was defined
with a real-world dataset. The data was provided for the SW
region of Slovenia by one of the largest electrical distributers
in the country. The data include three main groups of measured
variables: weather data (temperature, precipitation, wind speed
and sun radiation), time categorical data (hour, month, day
etc.) and electrical load (electric energy). The provided data
included hourly measurements for three years (2010 to 2012).
In Table I the measured variables are represented with their
notations.

TABLE I
HOURLY SAMPLED VARIABLES IN DATASET

Ime Symbol Unit or value set
Electric energy E MWh

Temperature T C

Sun radiation Γ W/m2

Precipitation R mm

Wind speed W m/s

Hour (6 = 6:00 to 7:00) H 1 − 24

Day in a week (1 = Monday) F 1 − 7

Day in a month G 1 − 31

Month M 1 − 12

Year Y 2010 − 2012

Holiday (1 = holiday, 0 = rest) P 0 or 1

Another degree of difficulty when dealing with the database
is that solar radiation, temperature, and wind speed are sam-
pled only once per hour and are not averages in the hour. If
the radiation is sampled at the moment a cloud passes by in
an otherwise clear sky, the measurement is corrupted. This
is also one of the reasons that separation was done (section
IV-A). The aforementioned problem is referenced as single
measurements in this paper.

A. Data preparation

The initial data analysis showed quite distinct differences
among daily load profiles between weekends, weekdays and
border days (days before or after the weekend or holiday). The
latter has similarities to both - weekdays and weekends. To
include this finding into the model, firstly special date variable
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Fig. 2. Daily load profiles different days of a week with a stable weather

D∗ is introduced. Variable D∗ has value 0 at weekdays (F )
and 1 at weekends (F ) or holidays (P ) (Eq. 1):

D∗(k) =

{
1, F(k) ∈ {6, 7} ∨ P(k) = 1

0, otherwise
(1)

To model border days, the influence of neighboring spe-
cial days, presented by symbol D± need to be taken into
account. The value of D± is calculated with Eq. 2, where
D∗(k − 1) and D∗(k + 1) are weighted with parameters
g−, g+, respectively and their product with g±. The product
(g±D∗(k − 1)D∗(k + 1)) was added to the equation due to the
following observation: if a weekday falls between two special
days, it has very similar characteristics to the special days;
thus, the joined influence D± is bigger than the sum of next
and previous days’ influence.

Variables D∗ and D± are merged into the date specialty D
with Eq. 3, in which larger one is used; therefore, it follows:
if k-th day is a holiday or weekend D(k) is set to 1, otherwise
it is defined with the influence of neighboring days D(k) =
D±(k). In order to insure that D± is always lower than 1 as
the day cannot be more special than the special day itself, the
condition under Eq. 4 must apply for the parameters g.

D±(k) =g+D∗(k + 1) + g−D∗(k − 1)+

+ g±D∗(k − 1)D∗(k + 1)
(2)

D(k) = max
[
D±(k), D∗(k)

]
(3)

g+ + g− + g± ≤ 1 (4)

Another observation made when analyzing the data is that
load is not linearly correlated with amount of precipitation: it
mostly depends on whether it was raining or not. The reason
for that might be that precipitation does not significantly
influence heating, but it does influence whether people stay
at home or go for a trip. This consequentially has an impact
on electrical load. Therefore, the hourly precipitation is limited
upwards to Rmax = 10

24
mm
h (Eq. 5). Value 10

24
mm
h is defined

in order to have the maximal sum of a precipitation in a day
equal to 10 mm.

Rl(k) =

{
Rl(k), Rl(k) ≤ Rmax

Rmax, Rl(k) > Rmax

,∀(l, k) , (5)

where Rl(k) is precipitation in k-th day on l-th hour.

III. METHODOLOGY

In this section, the identification of the TS fuzzy model is
described. In subsection III-A, a basic TS model is presented,
subsection III-B explains the used recursive Gustafson-Kessel
(GK) clustering and subsection III-C propose improvements
to GK clustering. The section is concluded with subsections
about the identification of local models (subsection III-D).

A. Takagi-Sugeno model
The TS model was first introduced in [42]. It is used in many

different fields, most notably in the area of modeling non-
linear systems. The main idea of the TS model is to separate
the input-output problem space into smaller local areas, where
the system is simpler. For each local area, a local model is
designed that approximates nonlinear system dynamics in that
area. With the introduction of membership degrees, a smooth
transition between the local models is achieved. The output of
the TS model is defined as the weighted sum of local model
outputs Eq. 6.

ŷ =
m∑
i=1

µi(xp)ŷi(x) ,
m∑
i=1

µi(xp) = 1 , (6)

where ŷ represents the output of the TS model, x =
[x1, . . . , xr−1, 1]T represents the regression vector, xp =
[xp1 , . . . , xpq ]

T represents the partitioning vector, µi(xp) the
membership degree function of i-th cluster, ŷi(x) is output of
i-th local model, and m is number of clusters.

To uniquely define the TS model, the designer needs to set:
• Membership functions µi(xp) for space partitioning
• Local models and their parameters.
In this paper, membership functions are defined using a GK

clustering, and the local models’ parameters are defined using
a weighted least squares algorithm (WLSE). Both methods
will be explained in the next sections.

B. Recursive GK (rGK) clustering
The membership functions can be defined using the GK

clustering [43]. The GK algorithm defines local areas of the
partition space with clusters. Each cluster is described with a
prototype vi that represents a point in the input space and with
a fuzzy covariance matrix Fi that describes the size and shape
of a cluster-data dispersion around the cluster prototype. These
parameters can be, for example, directly used as parameters
for Gaussian membership functions.

To adapt to changes in the system, a recursive GK clustering
was proposed in [32]. The method is derived from the off-line
version of the GK algorithm. Prototypes vi and covariance
matrices Fi of the i-th cluster are updated in every sample by
equations found in [32].

Initial values vi(0), Fi(0) and si(0) are obtained on a
training set of with off-line GK clustering described in [43].
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C. Improved cluster membership
One of the problems observed using the original GK clus-

tering for the STLF problem was due to its membership
definition, which does not consider the quality/outputs of local
models; therefore, only data density is considered. One possi-
ble consequence is clusters that include large non-linearities,
which contradicts the purpose of TS models separating do-
mains into simpler, preferably linear areas. In other papers (e.g.
[34]), output is taken into account using GK clustering using
input-output space for partitioning, but this method encounters
the same problems in the case of the high dimension of
input space, as output can become insignificant to clustering
(only one of N + 1 dimensions). Another cluster method is
fuzzy c-regression (FCR) [44] in which clustering is done
in the output space. However, different problem with similar
consequences is encountered here: because only the output
comparison is important, samples in the same cluster can be
located very far from each other in the partition space. This
results in overlapping clusters and, as a consequence, corrupted
parameters are estimated as they are gained across multiple
regions with different non-linearities (shown in Fig. 3 as FCR
(bad), around x = 0). Therefore, a combined membership
function is proposed, which combines the advantages of both
the abovementioned clusterings.

In GK clustering, membership functions are described with
(7), where di(k) is Mahalanobis distance between cluster with
center vi and covariance matrix Fi and the sample xp.

µi(di) =
di

−2
η−1∑m

j=1 dj
−2
η−1

(7)

In fuzzy c-regression (FCR) algorithm, membership func-
tions are calculated based on an output distance ζi (8) (can be
also interpreted as local output error ei), which is the distance
between model output ŷi(k) of i-th cluster and measured
output of the system y(k) as seen in [45].

ζi(k) = ei(k) = fy(y(k), ŷi(k)) , (8)

where fy(a, b) is a output distance function between two
output vectors a and b. In [45], output distance used was
Euclidean and in this paper Manhattan distance was used,
but others can also be used.

In order to combine the benefits of both methods (input
space separability using di and taking into account model
quality with ζi), this paper proposes a combined membership
function using (Eq. 9), in which µ(di) is multiplied with
the exponential part using relative output distance ζi

σi
(σi is

weighted standard deviation of ζi).

µ∗i = e
−0.5 ζi

σiγσ · µi(di) , (9)

where µi(di) is the membership degree calculated using the
Mahalanobis distance (Eq. 7) and γσ is the trust multiplier. The
proposed method lowers the µi of samples, at which the local
model produces a significant error (big ζi). This eliminates
the outlier’s influence, the result of which is that only samples
with small model error are considered in building or adapting
the model. Multiplier γσ is added for model designer to

Fig. 3. Comparison of domain separation using different membership
functions in sigmoid approximation problem. The domain separation
is shown on top, and the resulting local models in the bottom (lines).
Vertical lines (with the same type as local models) represents points,
where neighbor clusters have same value of membership degree.

decide how dissimilar samples are included (bigger it is set,
more samples are included). For the offline GK algorithm, the
multiplier is set to γσ = 1 as it is desirable that the model
be fitted according output similarity as much as possible. In
rGK clustering, small γσ can identify system change as outlier,
which can result in non-adapting model as the data is too far
from local model. Therefore, the multiplier at rGK clustering
is set higher; in this paper, it was empirically set to γσ = 4.

The proposed combined membership degree µ∗i can be
used in steps of GK, where output is given (clustering and
adaptation). In the forecasting step, where only the input is
given, µ∗i cannot be used. Therefore, µi(di) is used as a
membership function.

The combined membership degree was compared with
original GK and FCR clustering on two datasets: on the
noisy sigmoid and on E forecasting. The results from the
E forecast are gathered in table III, the results for the noisy
sigmoid problem in table II, and detailed results for noisy
sigmoid are shown in Fig. 3. The best domain partitioning
results are obtained with FCR partitioning, but the algorithm
has a problem finding the global minimum and needs many
runs to find it even with the simple problems, such as the
sigmoid approximation (standard deviation or std of results
is 13x bigger in comparison to combined membership); in
bigger problems (E forecasting), the minimum is even harder
to reach. If comparing original GK clustering to the proposed
one based only on numerical results in table II, the combined
GK clustering is better overall (minimum root mean square
or RMS improved by 12.7%). If the qualitative comparison
is done on results in Fig. 3, it can be seen that resulted
domain separation of combined membership is clearer than
the one from original GK clustering. Therefore, the combined
membership function showed the best combination of accuracy
and convergence to the global minimum in the given example
problems.
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TABLE II
NOISY SIGMOID - RMS ANALYSIS IN 100 RUNS

min mean std max

Mahalanobis 0.055 0.057 0.013 0.181

FCR 0.043 0.212 0.064 0.272

Combined 0.048 0.049 0.0005 0.050

TABLE III
LOAD AVERAGE E FORECAST - MAPE ANALYSIS

Mahalanobis FCR Combined
MAPE[%] 2.78 3.20 2.42

D. Defining local models

In this paper, linear models were chosen for the local
models. The output of i-th local model is defined with (10).

ŷi = xTθi , (10)

where θi = [θi1, . . . , θir]
T is the vector of linear model

parameters of the i-th cluster. In this paper, vector θi is
estimated with weighted least mean squares (WLMS) method.

In this paper, sample weights of i-th model βi are set the
same as cluster membership function µi(k) for that sample
(11), so only samples in a cluster will influence local model
parameters θi. One drawback of the mentioned proposal is in
outliers’ influence on the local model, which can lower the
quality of model prediction.

βi(k) = µi(k) (11)

The WLMS method is an offline method to estimate initial
parameters θ0i , which are adapted using a recursive WLMS
(rWLMS) method [44].

IV. MODEL

To obtain the daily profile forecast, the first load profile
components are forecast separately. The load profile separation
is explained in SectionIV-A and the methods for component
forecast in SectionIV-B. To improve forecasts on holidays, the
holiday model is introduced in SectionIV-C. The final model
structure is shown in Fig. 4, and the complete forecasting
algorithm is explained in section IV-D

A. Problem division

The energy load is dependent hour to hour; therefore, hourly
dependency should be also included into the model. Conse-
quently, the first main contribution of this paper is proposed in
the division of the daily profile forecasting problem into three
subproblems: forecasting of the average E (12), the shape E
(16), and the standard deviation σ (13) separately (as seen
on Fig. 5). The shape and amplitude subproblem focuses on
modeling hourly dependencies, while the offset subproblem
focuses on modeling daily changes.

Hourly weather forecasts are not reliable because of single
measurements (section II); therefore, daily weather averages
were used as input for all subproblems.

TS model

holiday model

TS model

holiday model

TS model

holiday model

Xin

offset

P

Ê
∗

+

ê
Ê
∗ +

standard deviation

P

σ̂∗ +

êσ̂∗
+

shape

P

Ê
∗

+

êÊ∗ +

·

Ê

σ̂

+

Ê

+

Ê(k)

Fig. 4. Block diagram of constructed model. Dark-gray represents sub-
models and mathematical operations, and light-gray represents area of
forecasting subproblems E,E and σ.

Because each component is globally valid, some local
influences can be overlooked. In this paper, it is shown that it
is possible to model local influences in addition to the existing
component models. Therefore, the holiday error models ê

Ê
∗ ,

êσ̂∗ and êÊ∗ are presented.

B. General component forecasting with TS models
The second main contribution of this paper is designing TS

model to work accurately across whole year and all days of the
week, using the rGK algorithm. Having a universal model can
improve the forecast in two aspects: because of smooth fuzzy
transitions that can model non-linearities, fewer clusters/areas
are needed to model the whole domain. Consequently, there
are more samples per area, therefore estimated parameters in
area are more accurate. Second aspect is in parameter sharing,
as temperature dependency derived from workdays can be
shared to weekend days, where there are fewer samples with
more noise. To obtain a general forecast of every component,
TS model for each component was created separately using
described upgraded rGK clustering and rWLMS algorithm.
For every component, TS model was adjusted to it’s specific
behavior, which will be presented in the following subsections.

1) Offset and standard deviation general forecast: Average
of daily load profile is calculated with (12) and standard
deviation with (13). In this section forecasting of offset and
standard deviation is presented together as they have similar
properties.

E
∗
(k) = E(k) =

1

24

24∑
l=1

El(k) (12)

σ∗2(k) = σ2(k) =
1

24

24∑
l=1

(El(k)− E(k))2 (13)

After initial data analysis, strong correlation of average E(k)
and average of previous day E(k − 1) was found, as shown
in Fig. 6. Therefore, E(k − 1) was set as a foundation for



0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2795555, IEEE
Transactions on Industrial Electronics

Fig. 5. Problem division on offset E, shape E and standard deviation σ

Fig. 6. Graph of load average E(k) versus load average of previous day
E(k − 1)

the forecast. In order to include this finding, the average was
forecast using (14), where the average forecast is based on
the measured average of the previous day E(k − 1). The same
applies for standard deviation (15).

Ê
∗
(k) = E(k − 1) + ∆Ê

∗
(k) , (14)

σ̂∗(k) = σ(k − 1) + ∆σ̂∗(k) , (15)

where Ê
∗
(k) stands for the general forecasting average,

E(k − 1) for the measured average and ∆Ê
∗
(k) for the general

forecast change from previous day. The mentioned equation
reduces average forecasting to forecasting the difference be-
tween the average of the previous and forecasting day. The
same applies for standard deviation.

Because the difference ∆Ê
∗
(k) / ∆σ̂∗(k) is being forecast,

only the variable differences are used in x(k) (table IV).
Algorithm parameters are gathered in table V.

2) Shape general forecast: The shape vector of the daily
load profile E is calculated with (16). In this section, the
forecasting of E is presented

E∗(k) = E(k) =
E(k)− E(k)

σ(k)
(16)

Because correlation with previous value E(k − 1) was not
prominent, E(k) is forecast directly with daily variables used
in the regression vector, as presented in TableIV. Algorithm
parameters are gathered in TableV.

TABLE IV
PARTITIONING / REGRESSION VECTOR

Step Regression vector x(k)

E
[
∆T(k) ∆Γ(k) ∆R(k) ∆D(k) ∆W(k)

]
σ

[
∆T(k) ∆Γ(k) ∆R(k) ∆D(k)

]
E

[
T(k) Γ(k) R(k) W(k) D(k) E(k − 1)

]
Step Partitioning vector xp(k)

E
[
T(k) E(k − 1) ∆D(k) W(k)

]
σ

[
T(k) Ê(k) ∆D(k) σ(k − 1)

]
E

[
T(k) Ê(k) ∆D(k) W(k)

]

TABLE V
ALGORITHM PARAMETERS

rWLSE rGK & GK
γθ γc η m

E 0.99 0.98 1.6 2

σ 0.99 0.99 1.6 3

E 0.97 1 2 3

C. Modeling holidays

The developed TS model yields good results for the majority
of the days, but the model failed when observing results
for holidays (like 1st January as shown in Fig. 7), and the
forecasting error was greater than 10%. This error was also
transferred to model parameters, because they were adapting
to every sample including holidays.

Firstly, to improve model accuracy, model adaptation was
skipped on holidays to prevent the corruption of model param-
eters.

Secondly, in order to model differences between a holiday
profile and a normal one, a model was created to forecast
the holiday error of each component of TS models (ê

Ê
∗ , êÊ∗

and êσ̂∗ ). In this paper, 16 models were created, one for
each holiday. The forecast holiday error is added to forecast
components and joined with a final forecasting model equation

Fig. 7. Bad forecast on the first day of the year 1.1.2012
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(17).

Ê = ((

Ê︷ ︸︸ ︷
Ê
∗

+ PêÊ∗) · (
σ̂︷ ︸︸ ︷

σ̂∗ + Pêσ̂∗)) + (

Ê︷ ︸︸ ︷
Ê
∗

+ Pê
Ê

∗) , (17)

where ê
Ê

∗ , êÊ∗ and êσ̂∗ are holiday error forecasts of TS

models, Ê, Ê and σ̂ are corrected component forecasts, P is
holiday variable and Ê is model forecast.

We only have two samples per holiday in the training set;
thus, the only model that can be created with satisfactory
accuracy is an average model. Therefore, a model’s output is
calculated as an average of all TS model errors on that holiday
in the historical data (18) (19).

Sk = {i ∈ {1, . . . , k−1}|M(k) = M(i)∧G(k) = G(i)} (18)

ê(k) =

∑
i∈Sk

(
x(i)− x̂(i)

)
|Sk|

, (19)

where Sk is set containing day indexes i of previous days
in the dataset with same month and day as the k-th day,
|Sk| is the cardinality of Sk, ê is ê

Ê
∗ , êÊ∗ or êσ̂∗ and x is

E,E or σ depending on which component is being modeled.
Symbol M represents numerical representation of a month and
G represents a day in the month.

D. Forecasting algorithm

The proposed forecasting method is presented in algorithm
1. First, the component models are identified with the model
identification procedure, which can be then used in the online
load forecasting (forecasting step). To assure adaptability of
the forecasting model, the models are adapted after every
sample (adapting step). The forecasting and adapting steps
are part of the online procedure, which is run for every new
sample.

Algorithm 1 STLF by separating daily profile
1: Model identification
2: Use data preparation methods
3: Separate daily load profiles E into E, σ and E

4: General component model (Ê
∗
, σ̂∗ and Ê

∗
) identifica-

tion using offline GK clustering with combined member-
ship function

5: Online procedures
6: Load forecast for k-th sample
7: Use data preparation methods
8: Forecast general load components(Ê

∗
, σ̂∗ and Ê

∗
)

9: Forecast holiday error (ê
Ê

∗ , êÊ∗ and êσ̂∗ )
10: Join forecasts with (17)
11: Model adaptation for k-th sample
12: Adapt cluster parameters (vi, Fi) using rGK
13: Adapt local model parameters (θi) using rWLMS

TABLE VI
MAPE OF DIFFERENT PARTS OF THE MODEL

Symbol MAPE[%]

Component models

Ê 2.27

Ê 13.34

σ̂ 6.02

Developed model Ê 3.68

V. RESULTS AND DISCUSSION

The quality of the model is measured by mean absolute
percentage error (MAPE), calculated with (20).

MAPE[%] =
100

N
∗

N∑
k=1

24∑
l=1

∣∣∣∣∣El(k)− Êl(k)

El(k)

∣∣∣∣∣ , (20)

where N stands for the number of samples, El(k) and Êl(k)
for the measured load and forecast load on l-th hour of k-th
day, respectively.

The developed model was trained on data from 2010/11 and
tested on 2012. MAPE errors are gathered in TableVI, for the
developed model and its components separately. The MAPE
error of the developed model is 3.68%.

To obtain better insight into the results of the forecast,
the MAPE of every component (developed model in Fig.8a
and offset in 8b. Shape and standard deviation are omitted
because of lack of space) was compared depending on the
input variables - date specialty, day of the week and season
(winter is defined with months 12, 1 and 2, spring with
months 3-5, summer with 6-8, and autumn with 9-11). All
comparisons are shown in Fig.8a-b.

As expected, forecasting on weekends and holidays is worse
than on working days (4.10% versus 3.45%), but the difference
is smaller because of holiday error models (Fig. 8).

When comparing MAPE based on the day of the week,
the best results were obtained on Wednesday, followed by
Thursday and Tuesday. This fact is not surprising, because
in the middle of the week energy load stabilizes the most
as the weekend influence fades out. A more surprising fact
is that the largest error is obtained on Mondays and not
only across the weekend. The explanation for Monday’s error
is suggested as a consequence of week changes (vacations,
work trips, etc.), as this change is expressed on Monday.
This change is impossible to predict without more information
about migrations; therefore, large errors occur.

Shape forecast analysis showed similar characteristics as
the offset, with the expectation that the largest error is obtained
on Friday, followed by Monday and Sunday. The reason for
this can be found in the fact that loads on Monday and Friday
are influenced by the weekend shape and that this influence is
hard to model. Errors on Sundays can be the consequence of
the nature of the weekend load, which fluctuates from week
to week.

Forecast accuracy also varies across different seasons, which
can also be seen in Fig.8a. Model accuracy is similar across
the seasons except in winter, when the accuracy is the highest.
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(a)

(b)

Fig. 8. Above figures show overall forecast MAPE (fig. 8a) and offset
MAPE (fig. 8b) of depending on the sample variables. Left cluster of
columns compares MAPE of the forecast depending on data variable
D (gray bar represent result without holiday error model), middle one on
the day of the week F and last cluster on the season. Horizontal line
represents the MAPE of component forecast across all validation set.

The reason is not directly a result of the model, but is
a combination of energy load composition and the MAPE
metric: the substantial part of the load consists of heating load
(load dependent on temperature), which is relatively much
bigger in the winter. Heating load has smaller variance than
other load components do; therefore, it can be forecast more
accurately by including temperature as an input to a model.
Because the metric MAPE is also relative to the absolute load,
the relatively larger heating load, in comparison to the total
load in the winter, has the consequence of a smaller MAPE
error.

The most interesting seasonal results can be observed while
finding the sources of errors in other seasons. The primary
reason for error in autumn and spring is bad shape forecasting,
while in the summer bad average forecasting had greater in-
fluence on the final error. The reason for bad shape forecasting
across spring and autumn can be found in fast shape changing
(heating is replaced by air conditioning in spring and vice-
versa in autumn). Because of the low number of clusters, the
model cannot adapt fast enough to shape changes, meaning
the shape model output is always lagging behind the measured
shape. Improvements for spring and autumn load forecasting
should exist with great certainty, so this paper suggests more
research of methods that include more historic data in the
shape forecast.

A. Comparison to existing methods
The developed model was compared to LR, RLR [16],

original GK clustering (with problem division and holiday
error forecast) and SARIMA [3]. Both the LR and RLR
methods created separate models for every day and every
hour, and all LR, RLR, and SARIMA assume a quadratic
dependency on the temperature. The original GK clustering
was included to test proposed upgrades to clustering and to
test a single model across whole input domain. In Fig. 9,

MAPE values are gathered and shown together and for each
component separately. Note: with RLR, LR and SARIMA, the
first load profile is forecast, and then via equations (12, 13 and
16) components are extracted from the forecast. This is done
for the purpose of detailed analysis and pinpointing weak spots
of the developed model.

The developed model improves overall forecast and the
forecast of offset and shape, but falls behind SARIMA in am-
plitude forecast. This confirms the contribution of load profile
division, as division enabled more accurate forecasting of the
offset, which is the component with the biggest impact on
the final error. The proposed combined membership function
also improved forecasting, as it can be seen that they improve
the TS model forecast in all subproblems, in comparison
to original GK (0.16% MAPE for average, 0.87% MAPE
for shape 0.27% MAPE for amplitude and 0.23% MAPE
overall). Th

A comparison across seasons is shown in Fig. 10. The
developed model provides better results, especially in winter;
in summer and spring, the developed method is on par with
SARIMA, but for autumn SARIMA has the best results. The
reason for this could be found in the already mentioned fact
that in autumn the developed model always lags behind the
actual profile (especially shape), while SARIMA incorporates
those changes better. However, for winter, the capability of the
TS model to describe non-linear dependency on temperature
exceeds the SARIMA model results.

A comparison of different days of the week is shown in
Fig. 11; the results of LR and RLR were omitted for clarity
of the figure as they were already found to be considerably
worse than those of other methods. The developed forecast
model is the most accurate at the start of the week, while the
SARIMA model is more accurate on the weekend, from Friday
to Sunday (the original GK forecast is the least accurate of
the three in most of the days of the week). The reason for the
results could be that the weekend load does not considerably
depend on the load of the previous day as the weekly change
is taking place; therefore, the forecast based on the load of
the previous week is more accurate (SARIMA). However, the
load on Sunday already incorporates weekly load changes;
therefore, the forecast for Monday is more accurate using the
load on Sunday as an input (developed model).

Lastly, the holiday forecasts were compared between
SARIMA, the original GK, the original GK with holiday error
forecast, and the developed model. The results are gathered in
TableVII. The fuzzy methods yield better forecast in com-
parison to SARIMA; the holiday error forecast improved the
holiday forecast by 1.33% MAPE. The developed methods
yield an additional 0.96%MAPE improvement over the GK
with holiday error forecast. The results shows significant
improvements using holiday error forecast.

TABLE VII
COMPARING MAPE ERROR ON HOLIDAYS

SARIMA GK GK holiday Developed

MAPE[%] 7.60 6.87 5.54 4.58
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S

Fig. 9. Error MAPE comparison of different components between
developed and existing methods

S

Fig. 10. Error MAPE comparison between different methods across
different seasons and whole year.

Fig. 11. Error MAPE comparison between SARIMA, GK and developed
model on different day of the week.

VI. CONCLUSION

This paper presents solutions of the problem of STLF by
separating it into three subproblems (offset, standard deviation,
and shape), each of which was solved using an adaptive TS
model defined accurately across the whole input space (rGK
clustering and rWLMS algorithms were used with additional
developed upgrades). For the average and amplitude subprob-
lems, the paper proposes forecasting daily changes instead of
forecasting values directly for better results. To overcome large
errors on holidays, a model for each holiday was also created.

The findings of this paper are the following:
• The developed model improved load profile forecasting in

comparisons to other methods by at least 0.13% MAPE.
• Splitting daily profiles mostly improved offset forecast-

ing, which is the component with the most influence on
errors.

• The TS model used for general forecasting successfully
described non-linear dependencies.

• Holiday error forecasting was significantly improved;
therefore, it is shown that other local phenomenon can
be modeled in addition to the developed model.

• Using a single model valid across the whole input domain
enabled parameter sharing across different areas, which
resulted in good adaptability.

• The combined membership function improved the domain
separation for the TS model, which also improves the
forecast.

• The developed model does not use enough historical data;
therefore, larger errors were in the autumn and spring.

Future work: A method for including more historical data
in the model will be considered in order to improve spring and
autumn forecasting, such as including elements of the similar-
day method. Another algorithm worth including is auto-
matic feature selection, such as minimal-redundancy-maximal-
relevance (mRMR) [46]. Another area for research is to
include more factors into our model (announced major events
in the area, for example), in which big data approaches will be
researched. Furthermore, a separate model for weekends can
be introduced, which would be based on the previous weekend
and not on the previous day.
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[16] Š. Kunstelj, M. Rejc, and M. Pantoš, “Kratkoročno napovedovanje
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Mr. Černe received multiple awards for his ex-
ceptional master thesis in 2016 (Prešeren Award
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